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Detecting spring after a long winter:
coma or slow vigilance in cold,
hypoxic turtles?

Jesper G. Madsen, Tobias Wang, Kristian Beedholm and Peter T. Madsen

Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, 8000 Aarhus, Denmark

Many freshwater turtle species can spend the winter submerged in ice-

covered lakes by lowering their metabolism, and it has been proposed that

such severe metabolic depression render these turtles comatose. This raises

the question of how they can detect the arrival of spring and respond in a

sensible way to sensory information during hibernation. Using evoked

potentials from cold or hypoxic turtles exposed to vibration and light, we

show that hibernating turtles maintain neural responsiveness to light stimuli

during prolonged hypoxia. Furthermore, turtles held under hibernation con-

ditions for 14 days increase their activity when exposed to light or elevated

temperatures, but not to vibration or increased oxygen. It is concluded that

hibernating turtles are not comatose, but remain vigilant during overwinter-

ing in cold hypoxia, allowing them to respond to the coming of spring and

to adjust their behaviour to specific sensory inputs.
1. Introduction
Freshwater turtles can survive an entire winter without oxygen, submerged at

the bottom of frozen lakes; much attention has been devoted to understanding

how these extraordinary reptiles maintain cardiovascular and nervous func-

tions in complete anoxia at low temperatures [1,2]. Their anoxia tolerance

critically depends on the ability to reduce energy expenditure while elevating

anaerobic ATP production [3,4]. Cells within the central nervous system

(CNS), particularly those involved in sensory functions, for instance vision,

have a high ATP turnover [5]. The anoxia-tolerant turtles can decrease nervous

activity, and hence reduce ATP consumption by rendering neuronal mem-

branes less leaky (channel arrest) and by reducing the electrical activity

(spike arrest) [6,7], which seem to account for an 80% reduction in electroence-

phalographic activity in vivo during anoxia [8]. This silencing of neuronal

activity is primarily mediated by the release of the inhibitory neurotransmitter

GABA and reduced activity of the AMPA and NMDA receptors for the

excitatory neurotransmitter glutamate [1].

The marked reduction in the generation and propagation of action potentials

and post-synaptic potentials, that is a state of self-induced anaesthesia, has led to

the notion that freshwater turtles enter an unresponsive comatose state during

winter hibernation [6,9–11], leaving a behavioural conundrum as to how the tur-

tles sense the arrival of spring to resurface and resume normal functions. However,

in vivo evoked retinal light responses of freshwater turtles are only marginally

reduced in anoxia. [12]. The maintenance of retinal function and some vigilance

during anoxia may allow turtles to use the photoperiod as a cue when spring

arrives and also to engage sensible responses to environmental stressors.

Here, we investigate whether turtles indeed become comatose when anoxic at

low temperatures by (i) measuring evoked potentials (EPs) in response to light and

vibration stimuli and (ii) by measuring physical activity levels of cold hibernating

turtles in response to different stimuli.
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2. Material and methods
(a) Experimental animals
Trachemys scripta (0.15–0.5 kg) were purchased from Nasco (WI,

USA) and kept in tanks (278C) with access to a dry platform and

a heating lamp allowing for behavioural thermoregulation. They

were fed Tetra ReptoMin supplemented with vegetables, mussels

and fish.
hing.org
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(b) Effects of temperature and anoxia on evoked
potentials

EPs in response to vibration and light were measured using sub-

cutaneous stainless steel electrodes in anaesthetized turtles

(60 mg kg21 ketamine and 4 mg kg21 Rompun). The influence

of body temperature (Tb) on the EPs was assessed as the turtles

were cooled using a water bath (see the electronic supplementary

materials), while EPs were recorded at 25, 23, 20, 18, 15, 12, 10, 8,

5 and 38C over 126+35 min. EPs were also recorded, as Tb was

returned to 258C. The effects of hypoxia on EPs were assessed

at 208C. Having established normoxic responses by repeated

stimulations every 8 min, the turtles were rendered anoxic by

mechanical ventilation of the lungs with 50 ml N2 in combination

with an anoxic atmosphere in the experimental chamber; this

caused an immediate reduction in arterial PO2 to less than

5 mmHg (figure 1). Light and vibration stimulations were

repeated until the recorded EPs did not change. The turtles

were then reoxygenated by mechanical ventilation with air (see

the electronic supplementary material) while the peak-to-peak

amplitude of the EP were measured. For each series of measure-

ments, the amplitudes were normalized by dividing the values

by the value of the measurement in normoxia or at starting

temperature (figure 1).
(c) Spontaneous and evoked activity during hibernation
in cold, anoxic water

Having established that anaesthetized anoxic turtles continue to

exhibit EPs in response to light stimuli, we investigated whether

a rise in temperature, oxygenation of the water, light and

vibration would stimulate activity in non-anaesthetized hibernat-

ing turtles. Spontaneous activity was tracked with an infrared

camera and scored before and after each stimulus, based on

changes in relative illumination (see the electronic supplemen-

tary material). First, after 14 days in cold, anoxic water (PO2 of

the water was measured at 2.0+ 0.5 mmHg; see the electronic

supplementary materials), the turtles were filmed for a 2 h con-

trol period and then continuously exposed to one of the stimuli

for 4.5 h. Activity before and during stimuli was normalized to

the mean control period movement scores (see the electronic

supplementary material).
3. Results
(a) Evoked potential studies of anaesthetized turtles
The EPs to both vibration and light decreased towards the noise

level when Tb was reduced, and reappeared gradually when Tb

returned towards 258C (figure 1a). The EPs in response to

vibration, however, recovered slower and EPs in response to

light were higher upon rewarming (figure 1a,b). The EP respon-

siveness to vibration declined in anoxia and did not differ from

the background noise after 1 h (figure 1d). By contrast, the EP

responses to light persisted at normoxic levels throughout

anoxia (figure 1c).
The evoked responses were evaluated using permutation

tests to determine whether the median of the responses to the

two stimuli differed significantly. These tests were performed

separately for the data collected during cooling, reheating,

hypoxia and reoxygenation (see the electronic supplementary

materials). Tests with 10 000 iterations revealed significant differ-

ences between responses to light and vibration stimulation

during reheating ( p , 0.01), hypoxia ( p , 0.01), reoxygenation,

( p , 0.05) and for cooling ( p , 0.05), indicating different

degrees of neural shutdown for visual and vibrational senses.

(b) Behavioural responses of non-anaesthetized turtles
Figure 2b–d shows normalized movement data before and

during exposures to light, oxygen and vibration. The data were

tested (Wilcoxon signed rank) for significantly higher movement

during stimulation compared with the control period. Move-

ment increased as the temperature was elevated (figure 2a) and

when the light was turned on (figure 2b), but significant changes

in movements were not induced by reoxygenation of the water

(figure 2c). There was a slight, but not significant, increase

in movements to vibration stimuli (figure 2d). Heating caused

a significant linear increase in movements with temperature

( p , 0.01), showing that heating did increase activity.
4. Discussion
The anaesthetized turtles studied in our in vitro experiments

retained neural responsiveness to light during severe

hypoxia, while responsiveness to vibration under the same

conditions was reduced. During cooling, responsiveness to

both light and vibration were reduced to detection levels

when reaching 38C. Such severe reductions of responsive-

ness to stimuli in anaesthetized turtles in either cold or

hypoxic conditions are consistent with these animals being

endowed with mechanisms, such as channel and spike

arrest, that drastically reduce CNS activity to reduce

energy expenditure [7].

Despite this reduced neural activity, cold anoxic turtles

in vivo still increase behavioural activity immediately when

light stimulus was applied and gradually when heated. These

immediate responses of non-anaesthetized turtles in vivo are

remarkable, considering that metabolism of these animals is

merely 0.5% of that in normoxia at 208C [13,14], but nevertheless

consistent with previous results showing maintained light sen-

sitivity during anoxia [12,15]. We were not able to record

electrical activity following light stimulation at 38C, which prob-

ably reflect that the neural activity was below our experimental

detection limit. The lack of electrical activity does not appear to

be caused by the anaesthetics (see the electronic supplementary

materials). In light of the in vivo results from hibernating turtles,

it appears that the animals maintain nervous responsiveness to

light, despite it being undetectable.

The maintenance of visual response in the absence

of responses to vibrations suggests a differential shutdown of

modalities within the turtle CNS, where energy conserving

mechanisms seemingly are applied to a lesser extent in the

neurons connected with the visual system. Combined with

the faster recovery of light sensitivity and the behavioural

responses to light demonstrated here, it is implied that vision

is important for hibernating slider turtles.

The turtles also display increased activity when exposed to

increasing temperatures. This is probably caused by the general
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Figure 1. Box plots of normalized peak – peak amplitude for EP experiments. Red lines represent the median response from six turtles at a given temperature,
blue boxes show the lower and upper quartile values and whiskers are the most extreme values within 1.5 times the interquartile range. Red crosses are outliers.
(a,b) Light and vibration responsiveness during cooling and reheating. (c,d ) Light and vibration responsiveness during hypoxia and returning normoxia. Hypoxia –
reoxygenation turtles were ventilated with N2 every 8 min during blood sampling and stimulation experiments. Red traces in (c,d ) blood PO2 measurements of a
turtle being ventilated with N2 with units shown on the right y-axis. In (a), a turtle is shown on top of the shaker with electrodes placed (Photo courtesy of
Jesper Rais).
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positive effect of temperature on virtually all biological pro-

cesses in ectothermic animals. With an increased metabolic

rate, the time period the turtles can stay submerged is shor-

tened, increasing the need for the animals to breathe.

However, during natural conditions such an increase in activity

would be advantageous, as increased water temperature would

only occur when the ice cover had melted, allowing the turtles

to surface. Likewise, when the ice cover melts, light levels in the

water will rise. For the turtles, this would be a direct indication

that spring has arrived and that it is possible to surface.

Whether the animals actually use increasing light levels

during spring is, to our knowledge, unknown. This study

has demonstrated that they have the ability to use increased
light as a seasonal cue. It would be interesting to monitor

turtle activity during spring arrival and examine whether

there is any correlation between light, temperature and turtle

activity during this period. Some studies have been carried

out using radio telemetry to record the animals’ activity

during hibernation [16]. However, these studies do not attempt

to correlate environmental changes, such as increasing light

and temperature, with the turtles’ activity.

In conclusion, we show that freshwater turtles do not

enter a state of unresponsive coma when overwintering in

cold, hypoxic water, but that they, in a state of slow vigilance,

retain some modalities and appropriate motor functions

during winter hibernation.
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